Метод Парфенова

Парфенов Александр Сергеевич, метод Парфенова
Парфенов Александр Сергеевич

Метод оценки артериальной функции (состояние эндотелия и жесткости артериальной стенки) разработан доктором медицинских наук, профессором Парфеновым Александром Сергеевичем. В основе данного метода кардиологического обследования находится фотоплетизмографический принцип регистрации пульсовой волны объема как в покое, так и при проведении функциональных тестов (проба с реактивной гиперемией, дыхательная проба, фармакологические пробы). Данный подход позволяет получать чрезвычайно важные клинические данные о состоянии артериального русла испытуемого, но при этом не требует специальной подготовки оператора, проводящего эти измерения. Для правильной работы программно-аппаратного комплекса «Ангиоскан-01» достаточно только установить оптический датчик на концевую фалангу указательного пальца. Ангиосканирование с использованием этого прибора позволяет осуществлять оценку следующих параметров:

  • Состояние функции эндотелия в системе микроциркуляции;
  • Состояние эндотелия в крупных мышечных артериях;
  • Состояние артериальной стенки (жесткость, индекс аугментации);
  • Величину центрального артериального давления.

Работа над созданием метода оценки состояния эндотелиальных клеток А.С.Парфеновым была начата еще во время его работы заведующим лабораторией новых методов исследования в НИИ физико-химической медицины Министерства здравоохранения РФ (дир. академик Ю.М.Лопухин). В то время основное внимание было уделено изучению специализированных эндотелиальных клеток, так называемой ретикулоэндотелиальной системы. В лаборатории в 1996 году под руководством А.С.Парфенова была выполнена кандидатская диссертация по разработке метода оценки ретикулоэндотелиальной системы. В успешно защищенной в 1998 году докторской диссертации А.С.Парфенова «Реология атеросклероза» методу оценки функции ретикулоэндотелиальной системы была посвящена глава исследования.

Во время работы в США – 2001 – 2004гг. в университете штата Мэриленд и биотехнологическом центре А.С.Парфеновым были выполнены исследования по оценке взаимосвязи эндотелиальных и гладкомышечных клеток артериальной стенки. За время работы в США А.С.Парфеновым было опубликовано 12 работ, в которых основное внимание было уделено разработке новых методов диагностики.

Основная работа по внедрению метода оценки функции эндотелия в клиническую практику была начата в России в 2005 году. В 2006 году была подана заявка на патент России и РСТ заявка. В настоящее время имеется патент России и продолжается патентование в США и странах Евросоюза.

В 2007 году А.С.Парфенов с прототипом прибора для ранней диагностики сердечно-сосудистых заболеваний стал первым победителем телевизионного конкурса: «Фабрика мысли. Идея для России». В 2008 году А.С.Парфеновым был выигран конкурс на выполнения НИОКР «Разработка устройства для ранней диагностики сердечно-сосудистых заболеваний («Заказчик» Департамент науки и промышленной политики Правительства Москвы, «Пользователь» Департамент здравоохранения). С этого времени начато активное сотрудничество с компанией «ФИТОН» по разработке и подготовке к серийному производству прибора «АнгиоСкан-01». В конце 2008 года на диагностический комплекс «АнгиоСкан-01» были получены разрешительные документы.

В настоящее время доктор медицинских наук, профессор А.С.Парфенов является ведущим научным сотрудником гематологического научного центра РАМН, где на базе кардиологического отделения (заведующий отделением профессор В.М.Емельяненко) проводятся дальнейшие исследования по разработке новых методик кардиологического обследования и совершенствование прибора «АнгиоСкан-01».

Ангиосканирование: физические основы метода и измеряемые параметры

В основе разработанных методов и устройств заложен контроль состояния артериальной функции (жесткости стенки артерий и дисфункции эндотелия). Для проведения ангиосканирования используются оптические сенсоры, работающие в ближней инфракрасной области, позволяющие надежно регистрировать пульсовую волну объема.

ик датчик на пальце
Схематическое изображение оптического сенсора, установленного на концевой фаланге пальца. Инфракрасное излучение проходит через всю толщину пальца и регистрируется с помощью фотодетектора, который преобразует свет либо в напряжение (преобразователь свет/напряжение) или частоту (преобразователь свет/частота)

Первичный сигнал, который используется для дальнейшего анализа и обработки представляет собой фотоплетизмограмму. Фотоплетизмограмма (ФПГ) – неинвазивный сигнал, определяемый пульсовыми изменениями объема крови в тканях. Данные фотоплетизмографии наиболее тесно коррелируют с результатами, полученными при проведении венозной окклюзионной плетизмографии. Однако, между этими методами существуют и различия, определяемые тем, что датчик венозного окклюзионного плетизмографа, регистрирует пульсовое увеличение объема всей ткани на участке конечности, где установлен датчик растяжения.

давление и ФПГ сигнал
Одновременная запись кривой артериального давления и ФПГ сигнала. В нижней части рисунка представлен пример кривых, где отчетливо видно влияние акта дыхания, как на кривую давления, так и ФПГ.

ФПГ внешне очень сходна с пульсовой волной давления. В отличие от пульсовой волны давления, которую возможно зарегистрировать только инвазивно, при кардиологическом обследовании с размещением датчика давления непосредственно в просвете артерии, ФПГ позволяет получать информацию с помощью датчика размещенного на поверхности кожи испытуемого. Сигнал регистрируется либо в режиме прохождения фотонов через ткань от источника света к фотоприемнику, либо в режиме отражения – свет отражается от ткани назад в направление фотоприемника. В первом случае сенсор устанавливается на область концевой фаланги пальца или мочки уха, во втором – на любой участок поверхности кожи с помощью адгезионного слоя. Сенсор, работающий в режиме прохождения света, имеет лучшее соотношение сигнал/шум и наиболее часто используется в пульсоксиметрах. Отражательный сенсор имеет два основных достоинства: нет ограничений по месту установки, практически отсутствует сдавливание участка ткани. В тех случаях, когда необходимо мониторировать сигнал в течении длительного времени (наблюдение за пациентом в палате интенсивного наблюдения) отражательный сенсор имеет существенные преимущества, так как датчики выполненные в виде «прищепки» необходимо через несколько часов работы их расположение. В случаях кратковременных (несколько минут) измерений сенсоры, работающие в режиме прохождения света наиболее оптимальны.

пульсовые волны
Пример записи сигнала, зарегистрированного с концевой фаланги указательного пальца руки. На врезке показан оптический сенсор и микрофотография сосудов области регистрации сигнала.

Для оценки состояния эндотелиальной функции применяются как функциональные (окклюзионная), так и фармакологические пробы. В разработанных нами приборах, большое внимание было уделено простоте их применения и исключение влияние оператора на результаты теста, что позволяет их успешно применять в условиях лечебно-диагностических учреждениях, но и для домашней диагностики. Разработанная технология регистрации и контурный анализ пульсовой волны объема дает возможность получать клинически значимую информацию о состоянии жесткости артерий эластического типа (аорта и ее главные магистрали). Используемые нами алгоритмы обработки исходного ФПГ сигнала позволяют оценить:

  • Длительность изгнания крови левым желудочком
  • Амплитудные и временные соотношения ранней и поздней систолических волн
  • Индекс аугментации (вклад поздней или отраженной волны в величину пульсового давления)
  • Эффективность работы барорецепторного центра
  • Величину центрального давления

Проведение окклюзионной пробы, с помощью манжеты установленной на плече, дает возможность получить информацию о состоянии эндотелиальной функции:

  • В области мелких резистивных артерий (системе микроциркуляции)
  • Крупных артерий мышечного типа.

При использовании фармакологической пробы с нитроглицерином имеется возможность оценить вазомоторный отклик на экзогенный оксид азота. Дыхательная проба позволяет выявить лиц с выраженным атеросклерозом коронарных артерий.

Оценка жесткости артериальной стенки

Артериальная система человека в молодости представляет собой идеально устроенный аппарат, который выполняет функцию приема крови из левого желудочка (функция второго сердца) и дальнейшего распределения по областям и доставки крови к капиллярам. Огромное значение имеет способность артерий демпфировать пульсации артериального давления, создаваемые деятельностью сердца. В левом желудочке размах осцилляций давления составляет 120 мм.рт.ст. в систолу и падает практически до нуля в диастолу, тогда как размах колебаний давления в крупных мышечных артериях существенно меньше.

отделы артериального русла
Пульсовые волны в различных отделах артериального русла
(слева – эластичные артерии, справа – жесткие артерии).

В среднем за год аорта принимает и демпфирует 30 миллионов систолических выбросов, что вызывает определенную нагрузку на структуры стенки центральных артерий. При этом наибольшая нагрузка ложится на эластиновые волокна, что приводит к их частичному замещению более жесткими коллагеновыми волокнами. Одновременно происходит расширение просвета проксимальных отделов аорты. Повышение структурной жесткости крупных проводящих артерий и в первую очередь аорты, сопровождается увеличением скорости прохождения пульсовой волны.

пульсовая волна, нормальная эластичность аорты
Схема формирования пульсовой волны при нормальной эластичности аорты.

пульсовая волна, жесткая аорта
Схема формирования пульсовой волны при увеличении жесткости аорты.

Жесткая аорта приводит к увеличению скорости прохождения и отраженной волны от дистальных мышечных артерий и артериол. Ранний приход отраженной волны к сердцу, не в диастолу как у молодых, а середину систолы или даже в ее начало, с одной стороны увеличивает нагрузку на сердце. В этом случае, левый желудочек еще находится в фазе сокращения, а отраженная волна уже успевает вернуться к сердцу. Приход отраженной волны во время диастолы способствует перфузии миокарда, так как само сердце на две трети кровоснабжается в диастолу. Жесткая артериальная стенка приводит к неоптимальной работе сердца, при этом увеличивается пульсовое давление (систолическое давление увеличивается, а диастолическое может снижаться). Большое пульсовое давление неблагоприятно действует на капилляры (особенно мозга и почек), что приводит к ухудшению функционирования этих органов.

формирование пульсовой волны
Схема формирования пульсовой волны.

формирование пульсовой волны, увеличение посленагрузки
Схема формирования пульсовой волны.
Зеленым цветом представлена пульсовая волна

формирование пульсовой волны, увеличение пульсового давления

формирование пульсовой волны, снижение коронарной перфузии


Оценка эндотелиальной функции

Оценка состояние эндотелия рассматривается в качестве «барометра», указывающего, как на возможность развития сердечно - сосудистых заболеваний, так и оценивающего тяжесть состояния больных с различными клиническими проявлениями стенозирующего атеросклероза. При этом наибольшее внимание привлечено к оценке способности эндотелиальных клеток, синтезировать оксид азота. Накопленные клинические данные позволяют рассматривать молекулу оксида азота, как самое мощное антиатерогенное средство.


эндотелий артерии
Поперечный разрез артерии мышечного типа. Эндотелиальные клетки располагаются в виде монослоя на границе с текущей по артерии крови.
Средний слой – медия, представлен гладкими мышцами, которые в зависимости от их напряжения определяют тонус артериальной стенки.
Наружный слой – адвентиция, преимущественно состоит из соединительнотканных волокон.

кровоток в артерии, эндотелий в норме
Схема кровотока в артерии с нормально функционирующим эндотелием.



кровоток в артерии, нарушение функции эндотелия
Схема кровотока в артерии с нарушенной функцией эндотелия. В области ветвления сосуда имеется атеросклеротическая бляшка, вызывающая сужение просвета артерии.



атеросклеротическое поражение артерий, дисфункция эндотелия
Схема развития атеросклеротического поражения артерий.
Дисфункция эндотелия определяется, когда еще отсутствуют структурные изменения артериальной стенки.




Search